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Figure 1: The DUmask interface along with a subset of the gestures it enables. How each gesture is being performed under the
mask (left) and how it is captured by our camera (right) are both displayed.

ABSTRACT
Interactions using the face, not only enable multi-tasking but also
enable us to create hands-free applications. Previous works in HCI
used sensors attached directly to the person’s face or inside their
mouth. However, a mask, which has now become a norm in our
everyday life and is socially acceptable, has rarely been used to
explore facial interactions. We designed, “DUMask”, an interface
that uses face parts covered by a mask to discretely enable 14 (+1
default) interactions. DUMask uses an infrared camera embedded
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inside an off-the-shelf face mask to recognize the gestures, and
we demonstrate the effectiveness of our interface through in-lab
studies. We conducted two user studies evaluating the experience of
both the wearer and the onlooker, which validated that the interface
is indeed inconspicuous and unobtrusive.
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1 INTRODUCTION
Exploration and facilitation of facial interactions is a prevalent topic
in recent HCI literature. Facial interactions are usually attributed
to improving multi-tasking efficiency [49] and enabling hands-free
applications [8]. The latter has been extensively explored in building
assistive technologies for people with physical impairments [1, 24].

While multiple interfaces have been proposed to leverage the
tongue, lips, and cheeks for enabling facial interactions, they suffer
from various issues. For example, interfaces attached to the face
are usually bulky [15] and/or conspicuous [22, 57]. Non-attached
interfaces usually require augmentation of a specific body part [19]
or are invasive [13, 45]. Performing facial interactions in public is
also of concern as making faces or sticking the tongue out may be
perceived as rude, disgusting, playful, or sexually provocative.

To overcome these issues, we propose a wearable, face mask-
based interface, DUMask. While this work was initially inspired
by the increasing social acceptability of face masks due to rapidly
rising air pollution levels in countries like China, India, Australia,
and Pakistan; the recent COVID-19 pandemic has made masks
even more commonplace and acceptable, sometimes even required
by law. Furthermore, masks have also been treated as fashion ac-
cessories with designers creating unique design patterns on their
surface [9, 12]. DUMask conceals electronics within the mask, al-
lowing it to create a non-intrusive way to capture facial gestures
(tongue, lips, and cheeks) as input. The form factor of the mask
completely occludes the mouth which hides gestures that may seem
unnatural or awkward to onlookers. Our work makes the following
contributions:

• We present a novel interface that recognizes tongue, lip, and
cheek gestures in a form factor that is socially acceptable,
discreet as well as non-intrusive

• We also present the results and insights gained from a com-
prehensive evaluation of the usability of our interface (from
the wearer’s perspective) and its social acceptability (from
an observer’s perspective).

2 RELATED WORK
Previous research focused on detecting facial gestures either by
integrating a sensor inside the mouth leveraging the tongue [35]
and oral muscle movement [13], or through a wearable device on
the head leveraging facial muscle movement [15]. With face masks
becoming increasingly commonplace these days, there is some
recent research on augmenting them for different purposes as well.
In this section, we discuss research relevant to Oral Input Interfaces,
Facial Input Interfaces, and Mask-based Wearables.

2.1 Oral Input Interfaces
Gesture recognition systems to capture oral activity have been
explored widely for mobile [39, 54] and personal smart devices
[16, 40]. An on-body gesture sensing technique using acoustic in-
terferometry was described by Iravantchi et al. [20], which can
identify eleven hand and nine face gestures. While touch-based ges-
tures have been accepted for ubiquitous devices, in-the-air gestures
have not been widely integrated into commercial systems due to
the uncertainty about their social acceptability [4]. In ChewIt [13],
researchers showed an intra-oral interface for discrete interactions

which was carefully designed to not be obtrusive and can detect
several tongue-based gestures such as flipping, biting, etc. A sen-
sor embedded inside artificial teeth was designed by Li et al. [32]
which uses a small accelerometer for detecting oral activities such
as chewing, drinking, speaking, and coughing. Another teeth-based
interaction system called TYTH [42] was developed which is based
on the location of the tongue with respect to the teeth. Here, the
tongue act as a finger and the teeth as a keyboard. By sensing the
brain and muscle signals from behind the user’s ear along with
capturing the skin surface deformation caused by tongue move-
ment, it detects the interaction between the tongue and teeth and
enables typing. In TongueBoard [35] researchers placed a capaci-
tive sensor in the roof of the mouth for recognizing non-vocalizing
speech. Though these systems show promising results and claim to
create minimal discomfort to the users, placing a wearable inside
the mouth may need some habit formation time. Moreover, the
characteristics of oral features such as the tongue and the speaking
style may vary on a per-user basis, thus designing for a wider scale
and comfort may be a challenge. Therefore in DUMask, we augment
a face mask, which has been increasingly ubiquitous, to capture
oral gestures without intruding on the oral cavity.

2.2 Facial Input Interfaces
Similar to oral activity, facial gestures have been leveraged exten-
sively to facilitate hands-free interaction. Matthies, et al. also under-
line the opportunity of leveraging facial expression in their survey
about wearable sensing of facial expressions [38]. Specifically, a
tongue-based gesture detection system was developed by Goel et al.
[15], which uses Doppler radar units around the user’s face to iden-
tify gestures. Although the system achieves an acceptable gesture
identification accuracy, its social acceptability of it is of concern due
to its visual prominence. Electromyography (EMG) signals have
been previously used in interfaces to sense tongue, mouth, and
cheek gestures but they require prominent electrodes to be stuck
on a user’s face. An AI-enabled silent speech headset was devel-
oped by Kapur et al. [41, 57] to converse with a computing device
silently. The device is an ambulatory wearable system that connects
through Bluetooth with the computing device. Lukaszewicz has
used ultrasound images [36] to recognize the selected region of the
tongue surface for speech synthesis. Although the author concluded
that the position of the tongue surface is not sufficient for directly
steering speech on the level of phonemes, they showed that this can
be used to create simple oral input to control different devices. A
sound-based input recognition system was designed by Ashbrook
et al. to detect tooth clicks [8]. It uses a bone conduction micro-
phone to recognize the tooth click sounds from five different pairs
of teeth. In Lip-Interact [26], Sun et al. leverage the front camera of
a smartphone to propose silent-speech input and also evaluate the
social acceptability of their system compared to voice commands.
Mugeetion [27] describes a facial gesture-based music-playing sys-
tem where the authors have shown how the music played changes
with the facial expression and emotion of the user.

Facial expression and gesture identification has also been ex-
plored by sensing ear [31], jaw [55] and facial muscle [43] move-
ments. A jaw, face, and head movement recognition system called
CanalSense has been developed by Ando et al. [7] which uses
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barometer-based earphones to recognize the air pressure change
inside the ear canal. Amesaka et al. designed a facial expression
detection system using an ear canal transfer function to detect
twenty-one facial expressions in [5]. Buccal [34] augments a Mo-
bile VR headset with five IR proximity sensors to recognize lip and
jaw movement by measuring the deformation of cheeks and tem-
ples. Similar work was presented in CheekInput [56] where optical
sensors were used on a Head-mounted Display to measure the de-
formation of the skin for sensing touch gestures. Besides gestures,
previous works have also explored tracking facial movements in
the context of food intake monitoring [50].

While these interfaces successfully capture facial gestures to
create novel methods of interaction, they struggle with social ac-
ceptability and/or require instrumentation. Future developments
in technology may allow these interfaces to improve their social
acceptability and reduce their obtrusiveness, but our focus with this
work is to leverage the omnipresent face mask to design a system
that is socially acceptable and relatively easy to set up.

2.3 Mask-Based Wearables
While air pollution has been a major stakeholder in the promotion
of face masks, COVID-19 contributed to them becoming a manda-
tory wearable in most parts of the world, eventually presenting
an opportunity for innovation. As a response to the COVID-19
outbreak, researchers augmented face masks with sticker strips to
gauge a user’s exposure to the virus throughout the day [21]. Genç
et al. [14] have added electrochromic displays at the center of regu-
lar face masks to display a visualization representing the wearer’s
expression. This idea is aimed at compensating for the lack of facial
expressions while communicating with other people. TransEmotion
[29] is a full-color display in the form factor of a mask that replaces
the lower half of the wearer’s face with a photo-realistic virtual
face. This display can be used to help people who have difficul-
ties in making appropriate expressions based on a given situation.
Adhikary et al. [3] have created a prototype that embeds a micro-
phone and a Carbon Monoxide sensor inside a surgical mask to
monitor lung health and ambient air quality respectively. Adhikary,
et al. recently extended this work in SpiroMask, by augmenting
consumer-grade face masks with a microphone for continuous lung
health monitoring through spirometry [2]. In “Giving Up Control”
[47], researchers explored the implications of a face mask that only
opens and closes automatically based on pollution levels and does
not allow the user any control over their exposure to pollution.
Similarly, with FaceBit [10], researchers have also explored aug-
menting face masks for heart and respiration rate monitoring along
with several other health metrics in an energy-efficient system for
health management and frontline workers.

Takagi, et al. [48] developed a horizontal projection system for
projecting lip animation onto the user’s face masks for better com-
munication during physical meetups. Kashino, et al. [23] further
explored a new normal for face-to-face interactions by augmenting
a user with AR markers to facilitate a virtual full-face mask while
envisioning a future with augmented vision. Further, Kunimi, et
al, created E-MASK by using flexible and highly sensitive strain
sensors for silent speech interaction with 21 Alexa operations [30].
Additionally, with a premise for reducing stress, Xie, et al. [53],

created custom face masks for encouraging as well as gauging eye
contact in children with ASD to reduce stress while making eye
contact. Masui [37] also proposed a closed-loop dynamic facial ex-
pression augmentation method for creating masks for theatrical
performances by using thermochromic ink that leverages temper-
ature change to change colors while the artist is engaged in a
performance.

While these existing works combine face masks with technology,
none of them aims to leverage this form factor specifically for novel
gestural input nor discuss the advantages of doing so. DUMask
augments a face mask to present a novel interface that enables oral
and facial interaction.

3 DUMASK
In this section, we first describe the design criteria of DUMask
before discussing its implementation and the gestures it enables.

3.1 Design Criteria
The aim of building DUMask is to create an interface to enable facial
gestures while mitigating issues identified in previously explored
form factors. An additional hurdle that we wish to overcome is
the awkward seeming appearance of facial gestures which has
limited their use while out in public. Below we describe the design
guidelines we enforced while creating DUMask to achieve these
goals.

• Discreet Interactions: Interacting with DUMask should not
attract attention from onlookers. Due to this, audio-based
interactions such as tooth clicks and tongue flicks are out of
the scope of this work. The interface should actually obscure
the awkward seeming gestures from onlookers.

• Discrete Interactions: A person wearing a mask will perform
many compound facial movements such as while talking,
laughing, or licking their lips. Our gestures must be distinct
from such actions and hence DUMask focuses on detecting
short simple events which are not generally performed in
daily life.

• Non-Contact Sensing: Besides parts of the mask touching the
wearer’s face, there should not be any additional contact to
make the system as noninvasive as possible.

• Maintain Protection: The core functionality of the mask is
to protect the wearer from inhaling airborne microbes and
particulate matter. Our alterations must not compromise this
functionality.

3.2 Setup
Our setup consists of a standard N95 mask with a respirator and
fasteners attached to the strings allowing the users to make adjust-
ments to the mask according to their comfort. The electronics are
mounted on top of the mask by cutting a hole of 1.5 cm radius. The
hole is patched up with a cloth that maintains the mask’s protection.
The weight of the whole setup is 15.75g, including the sensor and
LEDs, while regular N95 masks usually weigh around 10g. While
this is more than a 0.5 times increase, wearing DUMask was rated
above average when it comes to comfort in our user study (Section
5.2), and this new weight is also along the lines of the weight when
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double masking with a surgical and N95 mask (10g + 4g), which
has been a prevalent practice during some parts of the pandemic.

Figure 2: DUMask Prototype

Our setup employs a Pi NOIR camera v21 with a Sony IMX219
8-megapixel sensor and a 73.8-degree wide field-of-view. Owing
to the absence of an IR filter in the NoIR camera, we were able to
view inside the mask in a low/no-light setting with the help of IR
illumination provided by an IR LED attachment2. We were able to
capture infrared images of the view inside the mask at a resolution
of 1024 x 768 pixels. The IR illuminator is configured to be switched
on at all times to provide uniform illumination across the samples
captured in different lighting settings. Since the LEDs operate in the
IR spectrum (880 nm), the illumination is not visible to either the
user or an onlooker through naked eyes. The camera communicates
with a standalone Raspberry Pi 3 Model B3 via a 15-pin ribbon cable
attached to the Pi’s camera port. DUMask is powered by a 5V, 10000
mAh battery bank via a USB cable and consumes approximately
350 mA current on average when operational. The IR camera setup
allows us to capture images without the presence of visible light
which would have been extremely difficult with a generic RGB
camera operating in the visible spectrum. Further, in this case,
adding extra visible lighting inside the mask to capture clear images
would illuminate the inside of the mask making it very noticeable
causing DUMask’s claim of being discreet to no longer be valid.

While we repurposed an existing N95 mask when creating DU-
Mask, we only use it as a representative for face masks. We acknowl-
edge that DUMask cannot achieve the same level of protection an
N95 mask does due to features such as electrostatically charged
mask fibers not being possible. However, our system can still pro-
vide the level of protection a regular cloth mask does, similar to
other examples of masks with electronics inside them such as the
AirPop Active+ Halo Smart Mask 4, Razer’s Project Hazel 5 and the
MASKFONE 6.

DUMask classifies 14 different gestures (Figure 4) based on the
movement of three parts of the face which are covered by a mask:
the tongue (T), cheeks (C), and lips (L). As mentioned in our de-
sign goals, we skip gestures involving jaw movements to keep our
gesture set distinct from everyday facial movements made while
talking. We consider the degrees of freedom available for trans-
lation (Figure 3) for these parts which leads us to the following
gesture set:
1https://www.raspberrypi.org/products/pi-noir-camera-v2/
2https://elementztechblog.wordpress.com/2017/09/20/ir-illuminator-for-raspberry-
pi-noir-camera/
3raspberrypi.org/products/raspberry-pi-3-model-b/
4https://www.airpophealth.com/us/airpop-active-smart-black-yellow
5https://www.razer.com/concepts/razer-project-hazel
6https://maskfone.com/

Figure 3: Defining facial gestures in the three-dimensional
space

(1) Move lips
left, MLL
(L:+𝑥 )

(2) Move lips
right, MLR
(L:−𝑥 )

(3) Hide upper
lip, HUL
(L:+𝑦)

(4) Hide lower
lip, HLL
(L:−𝑦)

(5) Hide both
lips, HBL
(L:−𝑧)

(6) Pout, P
(L:+𝑧 and
Left C:−𝑥 ,
Right
C:+𝑥 )

(7) Puff both
cheeks, PF
(Left C:+𝑥 ,
Right
C:−𝑥 )

(8) Puff left
cheek, PL
(C:+𝑥 )

(9) Puff right
cheek, PR
(C:−𝑥 )

(10) Tongue-
left, TL
(T:+𝑥 )

(11) Tongue-
right, TR
(T:−𝑥 )

(12) Tongue-
up, TU
(T:+𝑦)

(13) Tongue-
down, TD
(T:−𝑦)

(14) Tongue-
out, TG:
(T:+𝑧)

3.3 Gesture Set
The same set of 5 tongue gestures has also been the standard used
in previous works [15, 57] while the cheek gestures have been
explored before in the form of sip and puff interfaces [1]. While the
dexterity of the tongue also allows for a Tongue-In (T: -z) gesture by
retracting the tongue further inside the mouth, this often led to the
tongue being obscured or not properly visible due to lack of light
inside the mouth. This makes it indistinguishable from a normal
no-gesture state and hence we do not include it in our gesture set.
Pushing inside the mouth with the tongue was another subset of
gestures we considered but we had issues with distinguishing these
gestures from the puff cheek gestures and hence do not include
them in the final DUMask gesture set.

4 GESTURE RECOGNITION
Our goal in this section is to prove the technical feasibility of detect-
ing oral gestures a user performs by recognizing the IR images of
the lower half of their face. Our focus is hence not to find the most
optimized model to recognize the gestures but to demonstrate high
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Figure 4: The set of gestures enabled by DUMask

performance using generic machine learning models trained on
image features. The input features we consider are Flattened image,
HOG descriptor and LBP descriptor. The classifiers we consider
are Support Vector Machines, Decision Trees, and Random Forests.
In addition, we also consider a standard pre-trained CNN model,
AlexNet, which was proposed by Krizhevsky et al. [28] with raw
image inputs for our experiments. Parameters and intuition for
each of the algorithms can be found in the supplemental materials.
We use sklearn, skimage, openCV and PyTorch python libraries for
the implementations of these algorithms and feature extractors. For
the purpose of our experiments, we work with a set of 15 gesture
classes: 14 tongue, cheek, and lip gestures defined in Gesture Set
along with a “no gesture” or rest state.

We consider a single session as the period in which the user
wears the mask and performs the gestures without making any
major changes to the positioning of the mask. Whenever the user
wears the mask for a new session, there are changes in the position
of the mask relative to the user’s mouth which lead to affine trans-
formations (scaling, rotation, shearing, and translation) in different
sessions. Due to these differences in inter-session data, we also
consider how our interface performs on data from unseen sessions.

4.1 Data Collection Methodology
For collecting the data, the participants perform each gesture with
breaks. The gesture images are manually captured by an assistant
researcher after a two-second interval, in which the user must re-
turn to the no gesture state and perform the ongoing gesture again.
This is done to capture as much variance as possible in the gesture
images of the subject. Multiple gesture performances, coupled with
pauses account for real-world differences in the participant’s ex-
pressions. An alternative approach would be to capture multiple
frames in a few seconds such as in a video recording, however,
we do not take that approach as the frames would be very closely
related and would prove to be redundant information. The partici-
pants were asked to notify the researcher by raising their thumbs
when they are performing the gesture. Although the user’s mouth
was covered by a mask, a real-time feed of the camera was also
available to be used at their discretion.

As our setup involves augmenting a face mask that too at the
time of a pandemic, safety and hygiene was major concern while
collecting data from the participants. Each subject was given a new
mask to perform the studies, which were duly approved by our
institute’s IRB. As a precautionary measure, the researcher creating
the setup actively sanitized their hands while wearing a face mask
and gloves themselves. Social distancing was maintained and a
sanitizer and disinfectant were kept near the participants to be
used at will.

4.2 Baseline
Data Collection. We recruited 12 (6F/6M) participants aged be-

tween 19 and 41 for data collection for a session each. For each
subject, a total of 15 images are captured for each of the 15 gestures,
thus giving us a total of 2700 (12*15*15) images. For each of the 15
gestures, we have 180 images.

Experiment. For our baseline experiment, we train classifiers
with data from multiple users collected over a single session. Our
goal is to train the classifier with some images of each pose or
gesture and then accurately predict the pose in unseen test images.
For our traditional machine learning algorithms (SVM, DT, RF),
we use 12 of the 15 images per pose per subject as the training
images and the remaining 3 images as test images. For each pose,
we have a total of 144 training images and 36 testing images. For
these algorithms, we resize the images from their original resolu-
tion of 1024*768 pixels to 512*384 pixels. i.e, scaled by 50% along
each dimension. We also convert the image from RGB to grayscale
i.e. 3-channel to a single channel. We observed minimal to no loss
in recognition accuracies due to this scaling, and it considerably re-
duced the training and testing durations. We use an 80-20 train-test
split and perform 10-fold cross-validation. For our CNN algorithm,
for each pose, we use 11 training images, 1 image for validation,
and 3 test images. We resize the images to 224*224 pixels and retain
the RGB channel information.

Results. Table 1 presents the accuracy of the baseline experi-
ments. It is observed that Random Forests, with flattened images
as input, provide the highest accuracy of 98.7%, with pre-trained

259



AHs ’23, March 12–14, 2023, Glasgow, United Kingdom Bhatia and Saini, et al.

Table 1: Gesture Recognition Accuracy for the Baseline Ex-
periment

Features Classifier
SVM DT RF

Flattened Image 0.9486 0.7722 0.9870
Histogram of Oriented Gradients (HOG) 0.8842 0.6805 0.9638
Local Binary Pattern (LBP) 0.7464 0.4402 0.8333

Transfer learning based AlexNet
Training Accuracy 0.9696
Validation Accuracy 0.9166
Testing Accuracy 0.9722

Table 2: Gesture Recognition Accuracy for Session Depen-
dence (15 training images per pose)

Participant Random Forest+Flattened Image
Minimum Maximum Average

Participant 1 0.6266 0.9911 0.8818
Participant 2 0.5733 0.9955 0.8274
Participant 3 0.6533 0.8888 0.8133

0.8408
Participant Pre-trained AlexNet

Minimum Maximum Average
Participant 1 0.6888 0.9624 0.8464
Participant 2 0.4572 0.9214 0.7471
Participant 3 0.5884 0.8268 0.7644

0.7859

AlexNet close behind at 97.2%. In terms of practical applicability,
this experiment verifies that for a single session, given 11 or 12
images per gesture for a subject, we can nearly perfectly recognize
the gesture being performed by them in a testing environment.

4.3 Session Dependence
Data Collection. We recruited 3 (1F/2M) participants aged 22 (F),

22, and 35 for data collection overmultiple sessions. For each subject,
we collect data for 12 different sessions, spread across multiple days.
In each session, 15 images are captured for each gesture, with a
2-second gap in between, wherein the subject relaxes their mouth
before resuming the gesture.

Experiment. For each of the 3 participants, we perform leave-
one-out experiments, with data from 11 sessions as training data
and data from the 12th session is used as test data. We perform
12-fold cross-validation and our final goal is to evaluate the average
leave-one-out accuracy over data from multiple sessions. If the
model performs well on unseen test sessions, we can claim that
our model is session-independent. For our algorithms, we use the
Random Forest and AlexNet which had the highest accuracies in
our previous experiment.

Results. Table 2 presents the accuracy of the session depen-
dence experiment. We evaluated the average leave-one-out accu-
racy for the protocol and it comes out to be 84.08% for Random
Forest+Flattened Image, and 78.59% for pre-trained AlexNet. These

Table 3: Gesture Recognition Accuracy for Session Indepen-
dence (5 training images per pose)

Participant Accuracy (5 training images per pose)
Minimum Maximum Average

Participant 1 0.6533 1.0000 0.8533
Participant2 0.5066 0.9600 0.7755
Participant 3 0.6533 0.8667 0.7744

0.8010

models can be considered to be session independent and their per-
formances are likely to improve if more session data is available.
To build a session-independent model, the amount of data required
is a bottleneck. While this experiment establishes that building a
session-independent model is possible, ideally our model would be
one that requires less input from the user for training data. In the
next experiment, we thus focus on how to reduce the user effort to
produce a session-independent model. In lieu of the results of this
experiment, we also finalize the Random Forest+Flattened Image
learning algorithm over pre-trained AlexNet, as Random Forest
outperforms AlexNet, and takes less time to train. While the per-
formance of AlexNet seemed to be promising, the limited amount
of data and the dissimilarity between the ImageNet dataset and our
gesture set limited the performance of our model.

4.4 Minimum Required Training Data
Motivation. We seek to find the minimum number of training

images per gesture that would allow us to create a good session-
dependent model for the initial 10-12 usages, after which the setup
can be used in a completely session-independent manner. The initial
10-12 session-dependent usages would provide us with sufficient
user data to create a session-independent model.

4.4.1 Experiment 3.1: Session Dependent model with reduced input.

Data Collection. We use the same data as the baseline experiment
to find theminimumnumber of training images required per gesture
to create a robust session-dependent recognition system.

Experiment. We train the best-performing random forest clas-
sifier with 1-5 training images per gesture for all the participants
and use 5 test images for each of the gestures.

Figure 5: Graph of Number of Training Images vs. Testing ac-
curacy, with errorbar denoting the maximum and minimum
accuracies
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Figure 6: Graph of Number of Training Sessions vs. Accuracy
on Unseen Test Sessions

Results. Figure 5 shows a curve representing the Number of
Training Images vs Test Accuracy. From the graph, we observe that
given 5 training images per gesture, the average testing accuracy
comes out to be 98%, and the minimum and maximum accuracies
for individual participants are 94.66% and 100% respectively. This
result indicates that we can reduce the number of training images
used per session, with a bearable loss in accuracy and minimum
effort from the user.

4.4.2 Experiment 3.2: Session Independent model with reduced input.

Data Collection. We use the multi-session data for 3 participants,
as used in the previous subsection to verify whether fewer training
images per session can still create a reasonably well-performing
session-independent model.

Experiment. We train our session-independent model (random
forest with 100 trees and min max scaler) from experiment 2 with 5
training images per gesture for each session instead of the original
15 images per gesture.

Results. Table 3 demonstrates the performance of our model
when 5 training images are used per gesture per session, instead
of the original 15. While we suffer some loss in average accuracy:
84.08% to 80.10%, our model still performs well with an average
accuracy of 80.1%. These results verify that we can reduce the
number of training images required in each session, without any
drastic changes in performance. In conclusion, our setup can be
used in a session-dependent format for the first 10-12 times, during
which our model can be incrementally trained to finally obtain a
session-independent model.

5 USER EVALUATION
5.1 Study 1: Spectator’s Perspective
We conducted a survey to evaluate the social acceptability of the
DUMask gestures both with and without the mask. Our approach
consists of asking questions based on video recordings of the ges-
tures because it allows us to show the gestures being performed
in a real-world scenario rather than a controlled setting and is
a standard practice accepted in the community [6, 25]. We use
a between-participants design for the survey consisting of one
between-participants factor, whether the gestures were being per-
formed while wearing or not wearing a mask. We chose this design
as looking at a gesture being performed without a mask first and
then with a mask (or vice versa) can make the responders conscious

of what changes to expect. Thus, we wanted to avoid any ordering
effects. An unmodified mask was used in this study as we did not
want our augmentation to be a factor in how performing the inter-
actions looked. On manufacturing, DUMask can easily be made to
look like a regular mask by adding an extra layer of cloth to hide
the circuitry.

5.1.1 Procedure. We created two surveys, one corresponding to
each gesture with a mask and the other without. Both surveys
consisted of the same exact questions with only the videos being
different. Responders were shown 15 videos (average duration: 4
seconds) in each scenario, 14 corresponding to one of the gestures
being performed once and 1 corresponding to a no gesture state
where all actors kept a straight face (which was our control condi-
tion). Each survey consisted of the following sections:

(1) Public space scenario: This section is based on a scenario
that consists of two people inside a lift with one person per-
forming a DUMask gesture while the other does not and
keeps a straight face. Each video was followed by the below
question: Which one of the two do you think is making faces?

• Left • Right • Both • None

(2) Single person scenario: This section is based on a scenario
that consists of one person walking towards the camera
while performing a DUMask gesture. Each video was fol-
lowed by the below question:

Do you think that this person is making faces? • Yes • No

(3) Opinion on making faces: This section did not consist of
any videos and was thus the same for both the with-mask
and without-mask surveys. It consisted of the following 4
questions:

Do you find it weird when others make faces in public?
• Yes • No
Do you find it weird when others make faces in public while
wearing a mask?
• Yes • No
Would you be comfortable making faces in public?
• Yes • No
Would you be comfortable making faces in public while wear-
ing a mask?
• Yes • No

The order of the gestures in both scenarios was randomized for
each responder. Our initial approach with the survey consisted of a
general question about anything standing out in the scene with a
Likert scale answer. However, we faced issues with this approach
in our pilot testing where responders didn’t notice anything in the
scene or picked on subtle observations unrelated to the gesture
(actors’ clothing, movement of lift etc.). They also had difficulties
quantifying the degrees of weirdness required for the Likert scale
answer. Thus, we intentionally asked a leading question to shift
their focus to the face which had a binary answer. Though this
question is loaded, it works favorably in this specific context as
we can verify that even when the participants are biased towards
looking for specific actions around the face, they are unable to
clearly identify the gestures. We also explored alternate ways to
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Figure 7: Scenarios covered in our study on spectator perspective[L-R]: a public space, a lift with a mask; same lift without a
mask; a single person with a mask; the same person without a mask. (Screenshots from the videos used)

word the questions such as ”gesturing with the mouth“ and “moving
parts of the face” but “making faces” was the easiest for participants
to understand. To not lead the responses around "weirdness", we
split the task by first having the responders identify if a gesture
was being performed and only then asking if it was weird or not.

5.1.2 Results.

Survey 1: Without a Mask. This survey was filled by 30 people
(21 males and 9 females) with ages ranging from 19 to 52 years. The
results show that most people do classify all our gestures as making
faces i.e. actions different from those seen in daily life. The gestures
which some people felt as normal are the lip ones. We attribute this
to the fact that they involve very little movement and thus they
can be confused with just having the mouth closed if someone does
not look too carefully. There was also some confusion in the single-
person scenario regarding the tongue-down gesture as only 46.7%
classified it as making faces. We speculate that this may be due to
the actor not protruding her tongue enough while performing the
gesture. We discuss such notes on the videos in the section below.

Survey 2: With a Mask. This survey was filled by 30 people
(23 males and 7 females) with ages ranging from 19 to 57 years.
The overall responses are ambiguous as to who is performing a
gesture (public space scenario) and if a gesture is being performed
(single-person scenario). This suggests that people were unable
to clearly perceive whether something was happening behind the
mask or not and only speculated because our question asked them
to.

Two differences that are observed in the results are for the Puff
Left gesture in both scenarios (60%, 63.3%) and the Hide Lower
Lip in the single-person scenario (56.7%). Looking at the videos for
these cases we find a slight jaw movement in all three cases which
leads to a movement of the mask. The hide lower lip gesture does
involve a slight jaw movement and the actor seems to have taken
a deep breath before performing the puff left gesture to fill their
cheeks with air.

Our intention with the videos was to record in a natural setting
without over-instructing the actor on how to perform the gestures.
This seems to have led to some artifacts in the recordings due to
possible variations in how one can perform a gesture e.g. sucking
in air/blowing air from the lungs to puff a cheek. While the results

are overall in favor of a mask being able to occlude facial gestures,
finding the most discreet way to perform a gesture can be a future
exploration.

Social Acceptability of Making Faces. Merging the responses
from both survey groups for the last section we see that a majority
of responders are averse to making faces in public (76.67%) and find
it strange when others make faces in public (61.67.7%). However,
making faces while wearing a mask is deemed to be acceptable by
a similar majority (68.33%). These results when combined with the
fact that most people were not able to identify gestures while a mask
is worn prove the social acceptability of the DUMask interface.

5.2 Study 2: User’s Perspective
To understand the usability of our system, we conducted a user
study with the actual DUMask interface. 12 individuals (6 male and
6 female) participated in the study and their ages ranged from 19-41
years.

5.2.1 Procedure. We introduced the participants to DUMask by
describing its purpose and functionality. The participants then had
to wear DUMask and one of the researchers demonstrated the ges-
tures one by one while not wearing a mask themselves. After each
demonstration, the participants had to try out the gestures them-
selves and rate them on a 5-point Likert scale how 1) Comfortable,
2) Easy to perform and 3)Unobtrusive they were. After trying
out all the gestures, we took a short semi-structured interview on
the participant’s overall experience with the DUMask system.

5.3 Analysis
We observe that tongue out was the most preferred gesture with a
high average rating and small standard deviation for all three fac-
tors. Participants felt “used to” (P6) this gesture having performed
it before. Next come the hide lip gestures, out of which the hide
upper and lower lip ones were rated highest for unobtrusiveness
(𝜇 = 4.92, 𝜎 = 0.29 for both) as they required “very less movement”
(P1). Conversely, the puffing gestures were rated lowest for unob-
trusiveness as they lead to a large change in the shape of the lower
half of the face.
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Figure 8: Summary of Likert Scale Ratings for how 1) Comfortable, 2) Easy to Perform and 3) Unobtrusive each Gesture was

The move lips and tongue left/right gestures were the least fa-
vored amongst the participants with one commenting that “moving
my lips sideways felt unusual” (P3). Both move lips gestures were
rated lower than the tongue gestures for unobtrusiveness due to
more movement involved in performing them. However, they are
rated similarly on comfort and ease of performance. An interest-
ing observation is that none of the participants favored one side
for facial gestures, with the tongue left and right gestures having
the exact same rating for each participant. Although Move Lips
Left/Right and Puff Left/Right also have similar ratings for each side,
they are not identical. We had expected the tongue-based gestures
to have a higher easy-to-perform rating than the others due to the
dexterity of the tongue but no such trend was observed.

6 DISCUSSION
6.1 Potential Applications
Along with being used as a hands free interface, DUMask’s design
also facilitates additional applications enabled through a mask-
based interface.

Private Interactions. Since DUMask is designed to hide the inter-
actions being performed by the user, it adds a layer of privacy by
not letting anyone know if and what gesture is being performed.
For example, one can send an SOS to alert their family about their
location without inducing risk in a dangerous situation. Further, a
series of gestures supported by DUMask may be used as a password
for sensitive information or to access restricted areas in a building.

Touchless/Contactless Interactions. With the world surrounded by
the COVID-19 pandemic, an obvious application is using DUMask
to interact with the interfaces for public infrastructure without
touching them. For example, a user can use DUMask to navigate
in an elevator. Before entering, the user can choose between going
up or down with the tongue up and down gesture. Once inside the

elevator, the user can choose which floor to go to by performing
the assigned gesture for that specific floor.

Assistive Device. Persons with disabilities often make use of fa-
cial gestures to perform particular tasks. The discreet nature of
DUMask enables these individuals to use facial gestures in public
without fear of judgement from onlookers or the discomfort of
holding something in their mouth. Another use case could be mute
individuals using DUMask gestures to construct sentences which
could then be used to communicate with people around them by
using a speaker embedded in the mask and a text-to-speech service.

Leveraging DUMask’s Camera. Smartphone cameras have been
extensively leveraged to propose healthcare solutions [11, 51, 52].
Owing to its design and placement, the DUMask camera has a com-
plete view of the user’s mouth offering an opportunity to monitor
their oral activity associated with lips, tongue, and teeth. DUMask
can be used to diagnose oral para functions such as bruxism, clench-
ing, and lip biting. Additionally, the camera feed can also be used
to train a silent speech interface.

6.2 Using Clothing to Enable Discreet
Interactions

While DUMask is a unique non-intrusive socially acceptable oral
interface, the idea of using a face mask can be used to enhance
existing works in this domain. For example, if discreetness is not
a requirement, microphones can be embedded inside the mask to
support audio-based interactions as in [8]. Intrusive interfaces such
as [13, 55] can possibly be made socially acceptable by hiding the
gestures performed and the hardware inside the mask. Similarly,
other articles of clothing can also be used to hide interactions
such as performing hand gestures inside mittens and pockets, toe
wiggling gestures inside shoes or ear wiggling inside a beanie.
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6.3 Towards DUMask as a Consumer Product
In the current setup, the camera and IR LEDs are tethered to the
processing unit (RPi) via a ribbon cable for power and data transfer.
For future iterations, we imagine a USB C cable, running through
the ear strap, to the camera and IR illuminator inside the mask to
a smartphone for power and data processing (similar to market
available AR glasses7). This prototype would completely hide the
camera inside the mask and offload all the processing to the mobile
device. Alternatively, a wireless interface sporting a battery and
a micro-controller unit can be created by adding a custom strap
situated at the back of the user’s head. While we acknowledge that
masks are an essential wearable in the current world scenario, the
addition of a custom strap would add weight to the mask which
could cause minor discomfort. Custom straps have become quite
prevalent for wireless VR headsets8 to improve the battery life
as well as to balance the front-heaviness of the interface. Further,
this would allow DUMask to offer a completely wireless interface
capable of capturing and recognising gestures via the in-strap setup.

When it comes to hygiene, we imagine having masks custom
stitched for DUMask that have openings to insert the electronics
that also have flaps to conceal what is inside. These custom stitched
masks can be then washed or disposed after use similar to regular
masks. For ensuring the electronics remain contagion free and
clean, they will need to be disinfected with methods used to sanitize
electronics such as UVC Light 9.

7 LIMITATIONS AND FUTURE WORK
This work aims to introduce the possibilities enabled by the mask
form factor and validate its feasibility through a research prototype.
Our approach to validating the performance of our interface in a
controlled lab setting is based on similar papers on oral interactions
published at top HCI conferences [7, 8, 15, 22, 32, 35, 45, 46, 57].
While DUMask is a fully functional research prototype, it is meant
to be a proof-of-concept and is currently not optimised for daily
usage. However, it is essential to discuss how it may perform in
real-world settings and how we can handle potential issues that
may occur. Till we are able to add these specific enhancements
to the interface, we reserve testing DUMask in more ecological
settings for future work.

7.0.1 Moisture in the Air Between the Mask and the Face. Misting
on the DUMask lens may occur due to condensation of the water
vapour from the wearer’s breath preventing the camera from de-
tecting any gestures. With the increased mask usage due to the
Covid-19 pandemic, research has been conducted on preventing
fogging on spectacles while wearing masks [17, 18, 33] and any of
the proposed methods such as antifogging agents or iodophor can
be applied on the camera lens to prevent fogging.

7.0.2 False-positives with Other Facial Movements. Although the
DUMask gesture set by design consists of movements that are not
performed usually in everyday life, certain measures can be taken to
further prevent the detection of false positives. In the current setup,

7https://epson.com/For-Work/Wearables/Smart-Glasses/Moverio-BT-40-Smart-
Glasses-with-USB-Type-C-Connectivity-/p/V11H969020
8https://www.oculus.com/accessories/quest-2-elite-strap-battery/
9https://cleanboxtech.com/

the interface has a three sample check which considers 3 samples
evenly distributed over a two-second window. For a gesture to be
detected, three consecutive samples would have to yield the same
result when processed by our model. Further, a microphone can
be installed inside the interface such that DUMask does not detect
gestures when the wearer is speaking. Another alternative could
be to use one of the puff cheek gestures (as they involve the most
movement) as a “Double Flip” gesture [44] to signal to DUMask to
start detection.

7.0.3 User Independent Recognition. The issue of low person inde-
pendent accuracy is often noted in oral interaction papers with re-
searchers building user-dependent systems for teeth [8, 32], tongue
[45, 57], and silent speech [22] gestures. Since user-dependent mod-
els are an accepted practice for mouth-based gestures in the com-
munity, we use a similar approach to prove the feasibility of the
mask form factor and to demonstrate that oral gestures can be
accurately detected even across different alignments of the mask.
A large amount of training data may enable us to produce a trans-
fer learning-based model, that is pre-trained on data from a large
number of participants, and needs fewer images from the users. A
greater amount of data would also open the possibility of using a
deeper network and training it from scratch. However, this would
require a huge data collection effort on people with different facial
features making it out of scope for our current work.

8 CONCLUSION
In this work, we present DUMask, a face mask-based oral interface
which captures facial gestures. We embedded an IR camera inside a
mask to recognize the gestures performed by a user while wearing
a mask. We evaluate our interface with a preliminary set of 14
gestures performed by manipulating Cheeks, Tongue and/or Lips.
Our evaluation of the user’s as well as on looker’s perception of
performing the gestures while wearing a mask shows the feasibility
of the interface and that it is suitable to be used even in public.
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